Technical Architecture
Comprehensive System Design for Investors
Architecture Executive Summary
Core Innovation: Device-Native AI Agent Orchestration Platform
Atlantis runs on-device, proactively processing the stream of your life data, passing it through agentic workflows that blend data points together to extract actionable intelligence and behavioral patterns, helping you shape your daily routine with timely insights delivered exactly when needed.
Key Technical Differentiators
- Local-First with E2E Device Ecosystem Sync: Unique hybrid architecture no competitor offers
- Secure Desktop to Mobile Compute Pathway: Seamless cross-platform experience with native apps
- Autonomous AI Agentic Workflows: Transform scattered data into timely, actionable insights delivered exactly when needed
- Workflow Development Kit: Create and extend workflows by combining essential tools and available connectors
- GDPR/EU AI Act Compliant: Privacy-by-design architecture with regulatory compliance
- Unified Memory Graph: Data fusion engine connecting ALL data types for contextual intelligence
Technical Capabilities & Advantages
High-Level System Architecture
flowchart TB
subgraph cloud[Middleware Node - Cloud]
direction TB
relay[atlantis-relay
Zero-Knowledge Server
with E2E encryption
• Push Notifications]
end
subgraph desktop[Desktop Studio]
direction TB
studio[atlantis-studio
macOS Application]
python[Embedded Python
Runtime]
end
subgraph mobile[Mobile Client]
direction TB
mobile_app[atlantis-mobile
iOS Application]
end
subgraph core[Core Services]
direction LR
core_engine[atlantis-core
AI Processing Engine]
ai[AI Models
LangChain]
mcp[Tools
Integrations]
end
studio -->|embeds| python
python -->|uses| core_engine
core_engine --> ai
core_engine --> mcp
python <-->|communicates| relay
mobile_app <-->|communicates| relay
classDef cloudClass fill:#581c87,stroke:#c084fc,color:#faf5ff
classDef desktopClass fill:#1e40af,stroke:#60a5fa,color:#f0f9ff
classDef mobileClass fill:#0891b2,stroke:#06b6d4,color:#ecfeff
classDef coreClass fill:#7c2d12,stroke:#fb923c,color:#fff7ed
class relay cloudClass
class studio,python desktopClass
class mobile_app mobileClass
class core_engine,ai,mcp coreClass
Architecture Components:
- Desktop Studio: atlantis-studio with embedded Python runtime for local processing
- Core Services: atlantis-core AI processing engine with models and essential tools
- Mobile Client: atlantis-mobile iOS application
- Middleware Node (Cloud): atlantis-relay zero-knowledge server with E2E encryption
Connection Types:
- —— Direct dependency/embedding
- ↔ Bidirectional communication
Architecture Principles
Core Project Structure & Dependencies
atlantis (Python AI engine & core services)
├── Core AI Engine
│ ├── agents/ # LangChain-based AI agents
│ ├── workflow/ # Workflow orchestration (nodes, edges, workflows)
│ ├── memory/ # Vector store + conversation memory
│ └── tools/ # Extensible tool integrations
├── Client Interfaces
│ ├── cli_client/ # Command-line interface
│ ├── messaging_client/ # Messaging app bot integration
│ └── mobile/ # Mobile client message handling
└── Services & Infrastructure
├── services/ # Business logic (notification, messaging)
├── repositories/ # Data access layer
└── config/ # Configuration management
atlantis-relay (Middleware Node)
├── FastAPI Application
│ ├── routes/ # API endpoints
│ │ ├── messages/ # Message routing
│ │ ├── sync/ # Data synchronization
│ │ └── auth/ # Authentication
│ └── utils/ # Utilities
│ ├── encryption/ # E2E message tunneling
│ ├── middleware/ # Request processing
│ └── websocket/ # Real-time connections
└── Infrastructure
├── docker/ # Container configuration
└── monitoring/ # Observability setup
Privacy-First Communication Model
flowchart LR
subgraph mobile_layer[Mobile Layer]
mobile[atlantis-mobile
Mobile App
• Mobile-locked
data integrations]
end
subgraph cloud_layer[Cloud Layer]
relay[atlantis-relay
Message Transport Hub
• Data Sync
• E2E Privacy
• Push Notifications]
end
subgraph desktop_layer[Desktop Layer]
studio[atlantis-studio
Desktop App
• Dashboard
• Auth]
core[atlantis-core
AI Engine
• LangChain
• Tools]
end
mobile <-->|E2E Encrypted| relay
relay <-->|E2E Encrypted| studio
studio <-->|Local IPC| core
classDef mobileStyle fill:#0891b2,stroke:#06b6d4,color:#ecfeff
classDef cloudStyle fill:#581c87,stroke:#c084fc,color:#faf5ff
classDef desktopStyle fill:#1e40af,stroke:#60a5fa,color:#f0f9ff
classDef coreStyle fill:#7c2d12,stroke:#fb923c,color:#fff7ed
class mobile mobileStyle
class relay cloudStyle
class studio desktopStyle
class core coreStyle
Client Application Layer
atlantis-mobile
├── Core/
│ ├── Domain/ # Business logic layer
│ │ ├── Models/ # Domain entities (ChatMessage, Commands)
│ │ ├── Repositories/ # Repository protocols
│ │ ├── UseCases/ # Business rules and operations
│ │ └── Services/ # Service protocols
│ ├── Data/ # Data access layer
│ │ ├── DataSources/ # Local/Remote data sources
│ │ ├── Repositories/ # Repository implementations
│ │ ├── Networking/ # API client and endpoints
│ │ └── Models/ # DTOs and data models
│ ├── Services/ # Infrastructure services
│ │ ├── Streaming/ # WebSocket streaming service
│ │ ├── Notifications/ # Push notification service
│ │ ├── HealthKit/ # HealthKit integration
│ │ └── Audio/ # Audio playback service
│ └── DI/ # Dependency injection
│ ├── ServiceContainer.swift
│ └── Factories/ # Service factories
├── Features/ # Feature modules
│ ├── Chat/ # Chat functionality
│ │ ├── Domain/ # Chat-specific business logic
│ │ ├── Data/ # Chat repository implementations
│ │ └── Presentation/ # ViewModels and Views
│ ├── Dashboard/ # Dashboard with tiles
│ ├── Settings/ # App settings
│ └── NavigationDrawer/ # Side navigation
└── UI/ # Shared UI components
Key Components:
- Architecture: Clean MVVM
- Dependency injection
- Data flow (reactive)
- UI Layer: SwiftUI, reusable components
- Core Services: Networking, Core Data, E2E authentication
- Security: E2E encryption, Keychain
Hardware Requirements
- Minimum: iPhone XS (iOS 18)
Desktop Studio Application Layer
atlantis-studio
├── Core/
│ ├── Application/ # Application layer
│ │ ├── Commands/ # IPC command system
│ │ │ ├── Kernel/ # Kernel lifecycle commands
│ │ │ └── Vault/ # Data vault commands
│ │ ├── Handlers/ # IPC communication handlers
│ │ └── Kernel/ # Python kernel management
│ ├── Domain/ # Business logic layer
│ │ ├── Models/ # Domain entities
│ │ │ ├── App/ # App state models
│ │ │ ├── Dashboard/ # Dashboard entities
│ │ │ ├── IPC/ # Inter-process communication
│ │ │ └── Logging/ # Logging models
│ │ ├── Protocols/ # Domain protocols
│ │ └── UseCases/ # Business use cases
│ ├── Data/ # Data access layer
│ │ ├── DataSources/ # Data source implementations
│ │ ├── Networking/ # API client
│ │ └── Repositories/ # Repository implementations
│ ├── Services/ # Infrastructure services
│ ├── UI/ # Shared UI components
│ └── Utils/ # Utilities (logging, etc.)
├── Features/ # Feature modules
│ ├── Content/ # Main content area
│ ├── Dashboard/ # Dashboard functionality
│ ├── DayCalendar/ # Calendar features
│ ├── NavigationDrawer/ # Side navigation
│ ├── Settings/ # App settings with full CRUD
│ ├── Tools/ # Tools management
│ ├── VoiceAssistant/ # Voice interface
│ └── Workflows/ # Workflow management
└── Resources/ # Bundled resources
└── atlantis/ # Embedded Python runtime
Key Components:
- AppKernel: Python subprocess management with stdin/stdout IPC
- Command System: Protocol-based IPC with automatic routing
- AppState: Central ObservableObject for SwiftUI state management
- Feature Architecture: Clean Architecture + MVVM per feature module
- Embedded Python: Bundled Python.framework with AI processing engine
IPC Protocol Specification
- Protocol: Command-based text over stdin/stdout pipes
- Encoding: UTF-8 with newline delimiters
- Format: __COMMAND_NAME__ for system commands
- Threading: MainActor for UI, background for kernel communication
macOS Integration
- System Requirements: macOS 14.6+, Xcode 14.0+, Swift 5.7+
- Build System: XcodeGen project generation
- Bundle Structure: Python.framework embedded in app bundle
- Logging: Dual file system + console with ANSI color support
- Menu Bar: Always-accessible AI assistant via status bar
- Shortcuts: Integration with macOS automation
- Offline Support: Full functionality without internet connection
Workflow System & Message Processing
Node-Based Architecture
# Workflow System Core Concepts
• Workflows: Directed graph of processing nodes
• Nodes: Individual processing units
• Edges: Data flow connections
• Context: Shared state across executions
Node Types:
├── CommandProcessorNode
├── AgentNode (AI processing)
└── NotificationNode
Message Processing Flow
Client → Controller → CommandHandler → AgentRouter
├── Parse Context & Filter Tools
├── Dynamic Chain Selection (RAG vs Direct)
├── LLM Processing with Tool Calls
└── Response Generation
Tool Integration Framework
Meta-Tools (User-Enabled):
• retrieve_docs, search_web, add_files
• Control processing behavior
LangChain Tools (Agent Callable):
• WeatherTool, EmailTool, BriefTool
• Direct LLM function calling
IPC Protocol
Text-based protocol over stdin/stdout:
• __SHUTDOWN__ → Request graceful shutdown
• __SHUTDOWN_COMPLETE__ → Cleanup finished
• __VAULT_PATH_UPDATED__ → Sync vault location
• UTF-8 encoding with line buffering
Security Architecture
Zero-Trust Security Model
End-to-End Encryption Implementation
Key Management:
- Device Keys: Generated locally, never transmitted
- Message Keys: Ephemeral keys for each message
- Backup Keys: Secure recovery mechanism for data access
- Key Rotation: Automatic rotation every 90 days
Encryption & Storage:
- At Rest: ChaCha20-Poly1305 encryption for local storage
- In Transit: TLS 1.3 for all network communications
- Key Management: User-controlled keys, never stored in plain text
- Data Retention: User-configurable with automatic expiration
Platform & Plugin Architecture
Plugin SDK Design
class AtlantisPlugin(ABC):
name: str
version: str
permissions: List[Permission]
@abstractmethod
async def process_query(self, query: str, context: dict):
"""Process AI query and return structured response"""
pass
Security & Isolation:
- Resource Limits: CPU, memory, and network quotas
- Permission System: Granular access to user data and system resources
- Code Review: Manual security review for all marketplace plugins
Developer Ecosystem
Plugin Categories:
- Productivity: Task management, note-taking, calendar enhancement
- Health: Fitness analysis, mental health tracking, nutrition
- Finance: Expense tracking, investment analysis, tax preparation
- Business: CRM integration, project management, reporting tools
- Creative: Writing assistance, design tools, media organization
Marketplace Economics:
- Revenue Split: 70% developer, 30% platform (industry standard)
- Pricing Models: Free, one-time purchase, subscription
- Enterprise Licensing: B2B sales with volume discounts
- Featured Placement: Promoted plugins for additional revenue
Scalability & Performance
Performance Targets
| Metric | Target | Current |
|---|---|---|
| API Response Time | <100ms | 95% of requests |
| AI Processing | <3 seconds | complex queries |
| Database Queries | <50ms | user data retrieval |
| File Uploads | 100MB+ | documents supported |
| Concurrent Users | 10k+ | simultaneous active |
Infrastructure Stack
Hosting & Compute:
- Primary: Heroku
Databases:
- Primary: PostgreSQL (user accounts, sync metadata)
- Vector Store: ChromaDB for semantic search
- Cache: Redis for session management and rate limiting
- Analytics: TimescaleDB for time-series metrics
Database Schema & Data Architecture
Database Architecture Overview
Technical Milestones & Roadmap
Technical Competitive Advantages
Architecture Owner: CTO + Engineering Team
Review Frequency: Monthly updates, quarterly overhauls
Next Review: October 30, 2025
Technical Risk Assessment & Mitigation